Seedless clustering in all-sky searches for gravitational-wave transients
نویسندگان
چکیده
The problem of searching for unmodeled gravitational-wave bursts can be thought of as a pattern recognition problem: how to find statistically significant clusters in spectrograms of strain power when the precise signal morphology is unknown. In a previous publication, we showed how “seedless clustering” can be used to dramatically improve the sensitivity of searches for long-lived gravitational-wave transients. In order to manage the computational costs, this initial analysis focused on externally triggered searches where the source location and emission time are both known to some degree of precision. In this paper, we show how the principle of seedless clustering can be extended to facilitate computationally-feasible, all-sky searches where the direction and emission time of the source are entirely unknown. We further demonstrate that it is possible to achieve a considerable reduction in computation time by using graphical processor units (GPUs), thereby facilitating more sensitive searches.
منابع مشابه
Detecting compact binary coalescences with seedless clustering
Compact binary coalescences are a promising source of gravitational waves for second-generation interferometric gravitational-wave detectors. Although matched filtering is the optimal search method for well-modeled systems, alternative detection strategies can be used to guard against theoretical errors (e.g., involving new physics and/or assumptions about spin or eccentricity) while providing ...
متن کاملSearching for gravitational-wave transients with a qualitative signal model: seedless clustering strategies
Gravitational-wave bursts are observable as bright clusters of pixels in spectrograms of strain power. Clustering algorithms can be used to identify candidate gravitational-wave events. Clusters are often identified by grouping together seed pixels in which the power exceeds some threshold. If the gravitational-wave signal is long-lived, however, the excess power may be spread out over many pix...
متن کاملLOCALIZATION OF SHORT DURATION GRAVITATIONAL- WAVE TRANSIENTS WITH THE EARLY ADVANCED LIGO AND VIRGO DETECTORS Citation
The Laser Interferometer Gravitational wave Observatory (LIGO) and Virgo advanced ground-based gravitationalwave detectors will begin collecting science data in 2015. With first detections expected to follow, it is important to quantify how well generic gravitational-wave transients can be localized on the sky. This is crucial for correctly identifying electromagnetic counterparts as well as un...
متن کاملUsed percentage veto for LIGO and virgo binary inspiral searches
A challenge for ground-based gravitational wave detectors such as LIGO and Virgo is to understand the origin of non-astrophysical transients that contribute to the background noise, obscuring real astrophysically produced signals. To help this effort, there are a number of environmental and instrumental sensors around the site, recording data in “channels”. We developed a method called the used...
متن کامل